Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 622
Filtrar
1.
Cancer Metastasis Rev ; 43(1): 379-391, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38319453

RESUMO

Intra-tumoural heterogeneity and cancer cell plasticity in colorectal cancer (CRC) have been key challenges to effective treatment for patients. It has been suggested that a subpopulation of LGR5-expressing cancer stem cells (CSCs) is responsible for driving tumour relapse and therapy resistance in CRC. However, studies have revealed that the LGR5+ve CSC population is highly sensitive to chemotherapy. It has been hypothesised that another subset of tumour cells can phenotypically revert to a stem-like state in response to chemotherapy treatment which replenishes the LGR5+ve CSC population and maintains tumour growth. Recently, a unique stem cell population marked by enriched clusterin (CLU) expression and termed the revival stem cell (RevSC) was identified in the regenerating murine intestine. This CLU-expressing cell population is quiescent during homeostasis but has the ability to survive and regenerate other stem cells upon injury. More recently, the CLU+ve signature has been implicated in several adverse outcomes in CRC, including chemotherapy resistance and poor patient survival; however, the mechanism behind this remains undetermined. In this review, we discuss recent insights on CLU in CRC and its roles in enhancing the plasticity of cells and further consider the implications of CLU as a prospective target for therapeutic intervention.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Animais , Humanos , Clusterina/metabolismo , Neoplasias Colorretais/patologia , Células-Tronco Neoplásicas/patologia
2.
Neuroscience ; 540: 38-47, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38242280

RESUMO

Secretory clusterin (sCLU) plays an important role in the research progress of nervous system diseases. However, the physiological function of sCLU in Parkinson's disease (PD) are unclear. The purpose of this study was to examine the effects of sCLU-mediated autophagy on cell survival and apoptosis inhibition in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. We found that MPTP administration induced prolonged pole-climbing time, shortened traction time and rotarod time, significantly decreased TH protein expression in the SN tissue of mice. In contrast, sCLU -treated mice took less time to climb the pole and had an extended traction time and rotating rod time. Meanwhile, sCLU intervention induced increased expression of the TH protein in the SN of mice. These results indicated that sCLU intervention could reduce the loss of dopamine neurons in the SN area and alleviate dyskinesia in mice. Furthermore, MPTP led to suppressed viability, enhanced apoptosis, an increased Bax/Bcl-2 ratio, and cleaved caspase-3 in the SN of mice, and these effects were abrogated by sCLU intervention. In addition, MPTP increased the levels of P62 protein, decreased Beclin1 protein, decreased the ratio of LC3B-II/LC3B-I, and decreased the numbers of autophagosomes and autophagolysosomes in the SN tissues of mice. These effects were also abrogated by sCLU intervention. Activation of PI3K/AKT/mTOR signaling with MPTP inhibited autophagy in the SN of MPTP mice; however, sCLU treatment activated autophagy in MPTP-induced PD mice by inhibiting PI3K/AKT/mTOR signaling. These data indicated that sCLU treatment had a neuroprotective effect in an MPTP-induced model of PD.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Apoptose , Autofagia , Clusterina/metabolismo , Clusterina/farmacologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
3.
Anticancer Drugs ; 35(3): 227-236, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085677

RESUMO

Ferroptosis is a novel form of cell death, which is distinguished from apoptosis and necrosis, and characterized by accumulation of lipid-based reactive oxygen species (ROS) in an iron-dependent manner. Erastin, a small molecule, was widely reported to trigger ferroptosis in various kinds of cancer cells, including pancreatic cancer cells by inducing ROS accumulation. However, how erastin treatment exerts cytotoxicity is not still fully understood. In this study, the effects of erastin in causing pancreatic cancer cell death via inducing ferroptosis and apoptosis are investigated. As expected, erastin treatment caused ROS accumulation, increase in iron concentration and non-apoptotic cell death, which is different from that of induced by apoptosis inducer, staurosporine. Interestingly, erastin treatment caused the upregulation of clusterin, which contributes to the regulation of malignant behaviors of pancreatic cancer, including preventing apoptosis and inducing chemoresistance. Without erastin treatment, overexpressed clusterin significantly promoted cell proliferation, which is consistent with its cytoprotective roles. After erastin treatment, overexpressed clusterin decreased erastin-induced ROS accumulation and cell death. By measuring iron concentration, reduced glutathione (GSH) and glutathione peroxidase 4 (GPX4), it is revealed that clusterin caused resistance to erastin-induced ferroptosis potentially via maintaining the enzymatic activity of GPX4, without disturbing GSH amount. Thus, ferroptosis inducer, erastin, may crosstalk with apoptotic cell death via regulating clusterin, indicating a more complex regulatory network between ferroptosis and apoptosis.


Assuntos
Adenocarcinoma , Clusterina , Ferroptose , Neoplasias Pancreáticas , Piperazinas , Humanos , Adenocarcinoma/tratamento farmacológico , Clusterina/metabolismo , Ferroptose/efeitos dos fármacos , Ferro/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Piperazinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral
4.
Oncoimmunology ; 13(1): 2294564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38125724

RESUMO

Dendritic cells (DCs) play a key role in the induction of the adaptive immune response. They capture antigens in peripheral tissues and prime naïve T lymphocytes, triggering the adaptive immune response. In the course of inflammatory processes DCs face stressful conditions including hypoxia, low pH and high concentrations of reactive oxygen species (ROS), among others. How DCs survive under these adverse conditions remain poorly understood. Clusterin is a protein highly expressed by tumors and usually associated with bad prognosis. It promotes cancer cell survival by different mechanisms such as apoptosis inhibition and promotion of autophagy. Here, we show that, upon maturation, human monocyte-derived DCs (MoDCs) up-regulate clusterin expression. Clusterin protects MoDCs from ROS-mediated toxicity, enhancing DC survival and promoting their ability to induce T cell activation. In line with these results, we found that clusterin is expressed by a population of mature LAMP3+ DCs, called mregDCs, but not by immature DCs in human cancer. The expression of clusterin by intratumoral DCs was shown to be associated with a transcriptomic profile indicative of cellular response to stress. These results uncover an important role for clusterin in DC physiology.


Assuntos
Clusterina , Neoplasias , Humanos , Morte Celular , Clusterina/genética , Clusterina/metabolismo , Células Dendríticas , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T
5.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834086

RESUMO

Colorectal cancer is the third most diagnosed cancer, behind only breast and lung cancer. In terms of overall mortality, it ranks second due to, among other factors, problems with screening programs, which means that one of the factors that directly impacts survival and treatment success is early detection of the disease. Clusterin (CLU) is a molecular chaperone that has been linked to tumorigenesis, cancer progression and resistance to anticancer treatments, which has made it a promising drug target. However, it is still necessary to continue this line of research and to adjust the situations in which its use is more favorable. The aim of this paper is to review the current genetic knowledge on the role of CLU in tumorigenesis and cancer progression in general, and discuss its possible use as a therapeutic target in colorectal cancer.


Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , Humanos , Clusterina/genética , Clusterina/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Colorretais/genética , Carcinogênese
6.
Pathol Res Pract ; 251: 154892, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37898038

RESUMO

Endometriotic cells exhibit a notable degree of invasiveness and some characteristics of tissue remodeling underlying lesion formation. In this regard, do matrix metalloproteinases 14 (MMP14) and other related genes such as SPARC-like protein 1 (SPARCL1), caveolin 2 (CAV2), and clusterin (CLU) exert any significant influence in the processes of endometriosis development and pathophysiology is not apparent. We aim to assess whether these genes could serve as potential diagnostic biomarkers in endometriosis. Microarray-based gene expression analysis was performed on total RNA extracted from endometriotic tissue samples treated with and without gonadotropin-releasing hormone agonist (GnRHa). The GnRHa untreated patients were considered the control group. The validation of genes was performed using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR analysis showed significant downregulation in the expression of MMP14 (p = 0.024), CAV2 (p = 0.017), and upregulation of CLU (p = 0.005) in endometriosis patients treated with GnRHa. SPARCL1 did not show any significant (p = 0.30) change in the expression compared to the control group. These data have the potential to contribute to the comprehension of the molecular pathways implicated in the remodeling of the extracellular matrix, which is a vital step for the physiology of the endometrium. Based on the result, it is concluded that changes in the expression of MMP14, CAV2, and CLU post-treatment imply their role in the pathophysiology of endometriosis and may serve as a potential diagnostic biomarker of endometriosis in response to GnRHa treatment in patients with ovarian endometrioma.


Assuntos
Endometriose , Feminino , Humanos , Endometriose/patologia , Clusterina/genética , Clusterina/metabolismo , Caveolina 2/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Endométrio/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/genética
7.
Biochim Biophys Acta Gene Regul Mech ; 1866(4): 194980, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37652361

RESUMO

Pseudoexfoliation (PEX) is a multifactorial age-related disease characterized by the deposition of extracellular fibrillar aggregates in the anterior ocular tissues. This study aims to identify the genetic and epigenetic contribution of clusterin (CLU) in PEX pathology. CLU is a molecular chaperone upregulated in PEX and genetically associated with the disease. Sequencing of a 2.9 kb region encompassing the previously associated rs2279590 in 250 control and 313 PEX [(207 pseudoexfoliation syndrome (PEXS) and 106 pseudoexfoliation glaucoma (PEXG)] individuals identified three single nucleotide polymorphisms (SNPs), rs9331942, rs9331949 and rs9331950, in the 3'-UTR of CLU of which rs9331942 and rs9331949 were found to be significantly associated with PEXS and PEXG as risk factors. Following in silico analysis, in vitro luciferase reporter assays in human embryonic kidney cells revealed that risk alleles at rs9331942 and rs9331949 bind to miR-223 and miR-1283, respectively, suggesting differential regulation of clusterin in the presence of risk alleles at the SNPs. Further, through bisulfite sequencing, we also identified that CLU promoter is hypomethylated in DNA from blood and lens capsules of PEX patients compared to controls that correlated with decreased expression of DNA methyltransferase 1 (DNMT1). Promoter demethylation of CLU using DNMT inhibitor, 5'-aza-dC, in human lens epithelial cells increased CLU expression. Chromatin immunoprecipitation assays showed that the demethylated CLU promoter provides increased access to the transcription factor, Sp1, which might lead to enhanced expression of CLU. In conclusion, this study highlights the different molecular mechanisms of clusterin regulation in pseudoexfoliation pathology.


Assuntos
Clusterina , Metilação de DNA , Síndrome de Exfoliação , Glaucoma , Humanos , Clusterina/genética , Clusterina/metabolismo , Síndrome de Exfoliação/genética , Síndrome de Exfoliação/metabolismo , Síndrome de Exfoliação/patologia , Glaucoma/genética , MicroRNAs/genética , Regiões 3' não Traduzidas/genética , Polimorfismo Genético , Regiões Promotoras Genéticas
8.
Dev Dyn ; 252(11): 1323-1337, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37283310

RESUMO

BACKGROUND: Growth factors are important in the developing and mature nervous system to support the survival of neurons. Developmental signaling molecules are known for their roles in controlling neurogenesis and neural circuit formation. Whether or not these molecules also have roles in cell survival in the developing nervous system is poorly understood. Plexins are a family of transmembrane receptors that bind Semaphorin ligands and are known to function in the guidance of developing axons and blood vessels. RESULTS: In embryonic zebrafish, plexina4 is expressed widely in the brain, becoming largely restricted to the hindbrain as neurogenesis and differentiation proceed. Apoptosis is increased in the embryonic hindbrain of a plexina4ca307/ca307 CRISPR mutant. Based on the literature, we tested the secreted heat shock protein, Clusterin, as a candidate ligand to mediate cell survival through Plexina4. clusterin is expressed by the floor plate of the embryonic zebrafish hindbrain, in proximity to plexina4-expressing hindbrain cells. Morpholino-mediated knockdown of Clusterin increases cell apoptosis in the hindbrain, with additional cell death observed in epistasis experiments where Clusterin is knocked down in a plexina4 mutant background. CONCLUSIONS: Our data suggest that Plexina4 promotes cell survival in the developing zebrafish hindbrain, likely through a pathway independent of Clusterin.


Assuntos
Clusterina , Peixe-Zebra , Animais , Axônios/metabolismo , Sobrevivência Celular/genética , Clusterina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Rombencéfalo/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Reprod Sci ; 30(12): 3456-3468, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37378824

RESUMO

Recurrent pregnancy loss (RPL) is a pervasive health issue affecting a large number of couples globally, which leads to increased emotional and financial strain on the affected families. While female factors have been extensively studied and are well known, the contribution of male factors to RPL remains largely unknown. As high as 40% of RPL cases are unexplained, which are termed as idiopathic RPL (iRPL), necessitating the investigation of male factors. The role of spermatozoa in early embryonic development is now well established, and recent research studies have shown that oxidative stress and DNA fragmentation in sperm cells are linked to RPL. The aim of this study was to identify proteomic markers of iRPL in human spermatozoa using tandem mass spectrometry. A label-free method quantified a total of 1820 proteins, and statistical analysis identified 359 differentially expressed proteins, the majority of which were downregulated in iRPL samples (344). Bioinformatics analysis revealed that proteomic alterations were mainly associated with biological processes such as response to stress, protein folding, chromatin organization, DNA conformation change, oxidative phosphorylation, and electron transport chain. In coherence with past studies, we determined fatty acid synthase (FASN) and clusterin (CLU) to be the most potential sperm markers for iRPL and confirmed their expression changes in iRPL by western blotting. Conclusively, we believe that FASN and CLU might serve as potential markers of iRPL and suggest exploratory functional studies to identify their specific role in pregnancy loss.


Assuntos
Aborto Habitual , Sêmen , Gravidez , Humanos , Masculino , Feminino , Sêmen/metabolismo , Clusterina/metabolismo , Proteômica/métodos , Espermatozoides/metabolismo , Aborto Habitual/genética , Ácido Graxo Sintases/metabolismo
10.
Int J Neuropsychopharmacol ; 26(8): 545-556, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37350760

RESUMO

BACKGROUND: Apolipoprotein E (APOE)-4 isoform, reelin, and clusterin share very-low-density liporeceptor and apolipoprotein E receptor 2 receptors and are related to cognition in neuropsychiatric disorders. These proteins are expressed in plasma and brain, but studies involving plasma expression and cognition are scarce. METHODS: We studied the peripheral expression (plasma and peripheral blood mononuclear cells) of these proteins in 24 middle-aged patients with alcohol use disorder (AUD) diagnosed at 4 to 12 weeks of abstinence (t = 0) and 34 controls. Cognition was assessed using the Test of Detection of Cognitive Impairment in Alcoholism. In a follow-up study (t = 1), we measured reelin levels and evaluated cognitive improvement at 6 months of abstinence. RESULTS: APOE4 isoform was present in 37.5% and 58.8% of patients and controls, respectively, reaching similar plasma levels in ε4 carriers regardless of whether they were patients with AUD or controls. Plasma reelin and clusterin were higher in the AUD group, and reelin levels peaked in patients expressing APOE4 (P < .05, η2 = 0.09), who showed reduced very-low-density liporeceptor and apolipoprotein E receptor 2 expression in peripheral blood mononuclear cells. APOE4 had a negative effect on memory/learning mainly in the AUD group (P < .01, η2 = 0.15). Multivariate logistic regression analyses identified plasma reelin as a good indicator of AUD cognitive impairment at t = 0. At t = 1, patients with AUD showed lower reelin levels vs controls along with some cognitive improvement. CONCLUSIONS: Reelin plasma levels are elevated during early abstinence in patients with AUD who express the APOE4 isoform, identifying cognitive deterioration to a great extent, and it may participate as a homeostatic signal for cognitive recovery in the long term.


Assuntos
Alcoolismo , Disfunção Cognitiva , Humanos , Pessoa de Meia-Idade , Alcoolismo/diagnóstico , Apolipoproteína E4/genética , Clusterina/metabolismo , Disfunção Cognitiva/diagnóstico , Seguimentos , Leucócitos Mononucleares/metabolismo , Isoformas de Proteínas
11.
Mol Neurodegener ; 18(1): 31, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37143090

RESUMO

BACKGROUND: Abnormal accumulation of amyloid beta peptide (Aß) in the brain induces a cascade of pathological changes in Alzheimer's disease (AD), and inhibiting BACE1, which is required for Aß generation, is therefore being explored for the treatment of AD by reducing Aß accumulation. As Bace1 knockout mice exhibit increased number of reactive astrocytes and AD brains have reactive astrocytes that surround amyloid plaques, we investigated the role of BACE1 in astrocytes and determined whether BACE1 regulates astrocytic functions. METHODS: We conducted unbiased single cell RNA-seq (scRNA-seq) using purified astrocytes from Bace1 KO mice and wild type control littermates. Similar scRNA-seq was also conducted using AD mice with conditional deletion of Bace1 in the adult stage (5xFAD;Bace1fl/fl;UBC-creER compared to 5xFAD;Bace1fl/fl controls). We compared the transcriptomes of astrocyte and reactive astrocyte clusters and identified several differentially expressed genes, which were further validated using Bace1 KO astrocyte cultures. Mice with astrocyte-specific Bace1 knockout in 5xFAD background were used to compare amyloid deposition. Mechanistic studies using cultured astrocytes were used to identify BACE1 substrates for changes in gene expression and signaling activity. RESULTS: Among altered genes, Clusterin (Clu) and Cxcl14 were significantly upregulated and validated by measuring protein levels. Moreover, BACE1 deficiency enhanced both astrocytic Aß uptake and degradation, and this effect was significantly attenuated by siRNA knockdown of Clu. Mechanistic study suggests that BACE1 deficiency abolishes cleavage of astrocytic insulin receptors (IR), and this may enhance expression of Clu and Cxcl14. Acutely isolated astrocytes from astrocyte-specific knockout of Bace1 mice (Bace1 fl/fl;Gfap-cre) show similar increases in CLU and IR. Furthermore, astrocyte-specific knockout of Bace1 in a 5xFAD background resulted in a significant attenuation in cortical Aß plaque load through enhanced clearance. CONCLUSION: Together, our study suggests that BACE1 in astrocytes regulates expression of Clu and Cxcl14, likely via the control of insulin receptor pathway, and inhibition of astrocytic BACE1 is a potential alternative strategy for enhancing Aß clearance.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Camundongos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Astrócitos/metabolismo , Clusterina/metabolismo , Camundongos Knockout , Camundongos Transgênicos
12.
Am J Respir Crit Care Med ; 208(2): 176-187, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37141109

RESUMO

Rationale: Extracellular histones, released into the surrounding environment during extensive cell death, promote inflammation and cell death, and these deleterious roles have been well documented in sepsis. Clusterin (CLU) is a ubiquitous extracellular protein that chaperones misfolded proteins and promotes their removal. Objectives: We investigated whether CLU could protect against the deleterious properties of histones. Methods: We assessed CLU and histone expression in patients with sepsis and evaluated the protective role of CLU against histones in in vitro assays and in vivo models of experimental sepsis. Measurements and Main Results: We show that CLU binds to circulating histones and reduces their inflammatory, thrombotic, and cytotoxic properties. We observed that plasma CLU levels decreased in patients with sepsis and that the decrease was greater and more durable in nonsurvivors than in survivors. Accordingly, CLU deficiency was associated with increased mortality in mouse models of sepsis and endotoxemia. Finally, CLU supplementation improved mouse survival in a sepsis model. Conclusions: This study identifies CLU as a central endogenous histone-neutralizing molecule and suggests that, in pathologies with extensive cell death, CLU supplementation may improve disease tolerance and host survival.


Assuntos
Antineoplásicos , Sepse , Animais , Camundongos , Histonas/metabolismo , Clusterina/metabolismo , Inflamação , Morte Celular , Sepse/tratamento farmacológico
13.
Transl Res ; 260: 32-45, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37211336

RESUMO

The CLU rs11136000C mutation (CLUC) is the third most common risk factor for Alzheimer's disease (AD). However, the mechanism by which CLUC leads to abnormal GABAergic signaling in AD is unclear. To address this question, this study establishes the first chimeric mouse model of CLUC AD. Examination of grafted CLUC medial ganglionic eminence progenitors (CLUC hiMGEs) revealed increased GAD65/67 and a high frequency of spontaneous releasing events. CLUC hiMGEs also impaired cognition in chimeric mice and caused AD-related pathologies. The expression of GABA A receptor, subunit alpha 2 (Gabrα2) was higher in chimeric mice. Interestingly, cognitive impairment in chimeric mice was reversed by treatment with pentylenetetrazole, which is a GABA A receptor inhibitor. Taken together, these findings shed light on the pathogenesis of CLUC AD using a novel humanized animal model and suggest sphingolipid signaling over-activation as a potential mechanism of GABAergic signaling disorder.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Camundongos , Doença de Alzheimer/genética , Clusterina/genética , Clusterina/metabolismo , Modelos Animais de Doenças , Mutação , Receptores de GABA-A/genética , Fatores de Risco , Humanos
14.
Hepatology ; 78(4): 1182-1199, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37013405

RESUMO

BACKGROUND AND AIMS: Overnutrition-induced activation of mammalian target of rapamycin (mTOR) dysregulates intracellular lipid metabolism and contributes to hepatic lipid deposition. Apolipoprotein J (ApoJ) is a molecular chaperone and participates in pathogen-induced and nutrient-induced lipid accumulation. This study investigates the mechanism of ApoJ-regulated ubiquitin-proteasomal degradation of mTOR, and a proof-of-concept ApoJ antagonist peptide is proposed to relieve hepatic steatosis. APPROACH AND RESULTS: By using omics approaches, upregulation of ApoJ was found in high-fat medium-fed hepatocytes and livers of patients with NAFLD. Hepatic ApoJ level associated with the levels of mTOR and protein markers of autophagy and correlated positively with lipid contents in the liver of mice. Functionally, nonsecreted intracellular ApoJ bound to mTOR kinase domain and prevented mTOR ubiquitination by interfering FBW7 ubiquitin ligase interaction through its R324 residue. In vitro and in vivo gain-of-function or loss-of-function analysis further demonstrated that targeting ApoJ promotes proteasomal degradation of mTOR, restores lipophagy and lysosomal activity, thus prevents hepatic lipid deposition. Moreover, an antagonist peptide with a dissociation constant (Kd) of 2.54 µM interacted with stress-induced ApoJ and improved hepatic pathology, serum lipid and glucose homeostasis, and insulin sensitivity in mice with NAFLD or type II diabetes mellitus. CONCLUSIONS: ApoJ antagonist peptide might be a potential therapeutic against lipid-associated metabolic disorders through restoring mTOR and FBW7 interaction and facilitating ubiquitin-proteasomal degradation of mTOR.


Assuntos
Diabetes Mellitus Tipo 2 , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Clusterina/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Sirolimo , Fígado/patologia , Serina-Treonina Quinases TOR/metabolismo , Metabolismo dos Lipídeos/fisiologia , Ubiquitinas/metabolismo , Lipídeos , Camundongos Endogâmicos C57BL , Mamíferos/metabolismo
15.
Tissue Cell ; 82: 102038, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36870313

RESUMO

BACKGROUND: Clusterin and transient receptor potential melastatin 2 (TRPM2) play significant roles in acute myocardial infarction (AMI), but their interactions in AMI are unclear. METHODS: Myocardial infarction was induced by ligation of the left anterior descending coronary artery in wild-type C57BL/6J male mice. Infarct size and myocardium pathology were evaluated after 6, 12, and 24 h of ischemia. The expression levels of clusterin and TRPM2 were measured in the myocardium. Furthermore, myocardial infarction was induced in TRPM2 knockout (TRPM2-/-) C57BL/6J male mice to evaluate the expression of clusterin. H9C2 cells with various levels of TRPM2 expression were used to analyze the effects of clusterin under hypoxic conditions. RESULTS: Following AMI, myocardial hypertrophy and TRPM2 expression increased in a time-dependent manner. In contrast, the expression of clusterin decreased in an infarct time-dependent manner. Knockout of TRPM2 protected against myocardial injury and resulted in upregulation of clusterin. In the H9C2 cells, cultured under hypoxic conditions treatment with clusterin or silencing of TRPM2 significantly increased cell viability and decreased TRPM2 expression. Treatment with clusterin protected against TRPM2 overexpression-induced damage in hypoxia-treated H9C2 cells. CONCLUSION: This study characterized the effects of clusterin on TRPM2 in AMI, which may guide development of new treatment strategies for AMI.


Assuntos
Clusterina , Infarto do Miocárdio , Canais de Cátion TRPM , Animais , Masculino , Camundongos , Clusterina/genética , Clusterina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/genética , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
16.
Autophagy ; 19(8): 2196-2216, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36779631

RESUMO

Mitophagy regulates cancer stem cell (CSC) populations affecting tumorigenicity and malignancy in various cancer types. Here, we report that cisplatin treatment led to the activation of higher mitophagy through regulating CLU (clusterin) levels in oral CSCs. Moreover, both the gain-of-function and loss-of-function of CLU indicated its mitophagy-specific role in clearing damaged mitochondria. CLU also regulates mitochondrial fission by activating the Ser/Thr kinase AKT, which triggered phosphorylation of DNM1L/Drp1 at the serine 616 residue initiating mitochondrial fission. More importantly, we also demonstrated that CLU-mediated mitophagy positively regulates oral CSCs through mitophagic degradation of MSX2 (msh homeobox 2), preventing its nuclear translocation from suppressing SOX2 activity and subsequent inhibition of cancer stemness and self-renewal ability. However, CLU knockdown disturbed mitochondrial metabolism generating excessive mitochondrial superoxide, which improves the sensitivity to cisplatin in oral CSCs. Notably, our results showed that CLU-mediated cytoprotection relies on SOX2 expression. SOX2 inhibition through genetic (shSOX2) and pharmacological (KRX-0401) strategies reverses CLU-mediated cytoprotection, sensitizing oral CSCs toward cisplatin-mediated cell death.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Clusterina/genética , Clusterina/metabolismo , Cisplatino/farmacologia , Autofagia , Células-Tronco Neoplásicas/metabolismo , Dinâmica Mitocondrial/genética , Neoplasias/metabolismo
17.
Cells ; 12(2)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672214

RESUMO

The cellular response to environmental stresses, such as heat and oxidative stress, is dependent on extensive trafficking of stress-signalling molecules between the cytoplasm and nucleus, which potentiates stress-activated signalling pathways, eventually resulting in cell repair or death. Although Ran-dependent nucleocytoplasmic transport mediated by members of the importin (IPO) super family of nuclear transporters is believed to be responsible for nearly all macromolecular transit between nucleus and cytoplasm, it is paradoxically known to be significantly impaired under conditions of stress. Importin 13 (IPO13) is a unique bidirectional transporter that binds to and releases cargo in a Ran-dependent manner, but in some cases, cargo release from IPO13 is affected by loading of another cargo. To investigate IPO13's role in stress-activated pathways, we performed cell-based screens to identify a multitude of binding partners of IPO13 from human brain, lung, and testes. Analysis of the IPO13 interactome intriguingly indicated more than half of the candidate binding partners to be annotated for roles in stress responses; these included the pro-apoptotic protein nuclear clusterin (nCLU), as well as the nCLU-interacting DNA repair protein KU70. Here, we show, for the first time, that unlike other IPOs which are mislocalised and non-functional, IPO13 continues to translocate between the nucleus and cytoplasm under stress, retaining the capacity to import certain cargoes, such as nCLU, but not export others, such as KU70, as shown by analysis using fluorescence recovery after photobleaching. Importantly, depletion of IPO13 reduces stress-induced import of nCLU and protects against stress-induced cell death, with concomitant protection from DNA damage during stress. Overexpression/FACS experiments demonstrate that nCLU is dependent on IPO13 to trigger stress-induced cell death via apoptosis. Taken together, these results implicate IPO13 as a novel functional nuclear transporter in cellular stress, with a key role thereby in cell fate decision.


Assuntos
Núcleo Celular , Clusterina , Humanos , Clusterina/metabolismo , Núcleo Celular/metabolismo , Morte Celular , Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular
18.
Cancer Sci ; 114(5): 2189-2202, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36694355

RESUMO

Constitutive activation of the mitogen-activated protein kinase (MAPK) signaling pathway is essential for tumorigenesis of pancreatic ductal adenocarcinoma (PDAC). To date, however, almost all clinical trials of inhibitor targeting this pathway have failed to improve the outcome of patients with PDAC. We found that implanted MIA Paca2, a human PDAC cell line sensitive to a MAPK inhibitor, PD0325901, became refractory within a week after treatment. By comparing the expression profiles of MIA Paca2 before and after acquisition of the refractoriness to PD0325901, we identified clusterin (CLU) as a candidate gene involved. CLU was shown to be induced immediately after treatment with PD0325901 or expressed primarily in more than half of PDAC cell lines, enhancing cell viability by escaping from apoptosis. A combination of PD0325901 and CLU downregulation was found to synergistically or additively reduce the proliferation of PDAC cells. In surgically resected PDAC tissues, overexpression of CLU in cancer cells was observed immunohistochemically in approximately half of the cases studied. Collectively, our findings highlight the mechanisms responsible for the rapid refractory response to MEK inhibitor in PDAC cells, suggesting a novel therapeutic strategy that could be applicable to patients with PDAC using inhibitor targeting the MAPK signaling pathway and CLU.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Clusterina/genética , Clusterina/metabolismo , Clusterina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proteínas Quinases Ativadas por Mitógeno , Quinases de Proteína Quinase Ativadas por Mitógeno , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Pancreáticas
19.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674497

RESUMO

There is a significant unmet need for therapeutics to treat ocular surface barrier damage, also called epitheliopathy, due to dry eye and related diseases. We recently reported that the natural tear glycoprotein CLU (clusterin), a molecular chaperone and matrix metalloproteinase inhibitor, seals and heals epitheliopathy in mice subjected to desiccating stress in a model of aqueous-deficient/evaporative dry eye. Here we investigated CLU sealing using a second model with features of ophthalmic preservative-induced dry eye. The ocular surface was stressed by topical application of the ophthalmic preservative benzalkonium chloride (BAC). Then eyes were treated with CLU and sealing was evaluated immediately by quantification of clinical dye uptake. A commercial recombinant form of human CLU (rhCLU), as well as an rhCLU form produced in our laboratory, designed to be compatible with U.S. Food and Drug Administration guidelines on current Good Manufacturing Practices (cGMP), were as effective as natural plasma-derived human CLU (pCLU) in sealing the damaged ocular surface barrier. In contrast, two other proteins found in tears: TIMP1 and LCN1 (tear lipocalin), exhibited no sealing activity. The efficacy and selectivity of rhCLU for sealing of the damaged ocular surface epithelial barrier suggests that it could be of therapeutic value in treating BAC-induced epitheliopathy and related diseases.


Assuntos
Clusterina , Síndromes do Olho Seco , Humanos , Animais , Camundongos , Clusterina/metabolismo , Olho/metabolismo , Síndromes do Olho Seco/induzido quimicamente , Síndromes do Olho Seco/tratamento farmacológico , Síndromes do Olho Seco/metabolismo , Conservantes Farmacêuticos , Compostos de Benzalcônio , Lágrimas/metabolismo , Soluções Oftálmicas/uso terapêutico
20.
Clin Exp Med ; 23(5): 1375-1391, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36098834

RESUMO

Clusterin (CLU) is a highly evolutionary conserved glycoprotein with multiple isoform-specific functions and is widely distributed in different species. Accumulated evidence has shown the prominent role of CLU in regulating several essential physiological processes, including programmed cell death, metastasis, invasion, proliferation and cell growth via regulating diverse signaling pathways to mediate cancer progression in various cancers, such as prostate, breast, lung, liver, colon, bladder and pancreatic cancer. Several studies have revealed the potential benefit of inhibiting CLU in CLU inhibition-based targeted cancer therapies in vitro, in vivo or in human, suggesting CLU is a promising therapeutic target. This review discusses the multiple functions and mechanisms of CLU in regulating tumor progression of various cancers and summarizes the inhibitors of CLU used in CLU inhibition-based targeted cancer therapies.


Assuntos
Clusterina , Neoplasias , Masculino , Humanos , Clusterina/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Apoptose , Transdução de Sinais , Biologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...